
The Deep Blue
D e v e l o p e r • E d i t i o n

The S.T.O.R.M. Developer News • Paris New-York • Issue 1 • 29/05/1995

– Written and Published on May 29th 1995 by Sdl –
Copyright ©1995 by Stéphane de Luca / www.deluca.biz – Do not reproduce without the written consent of the publisher.

STORM is dealing with parallax scrolling.

n consoles we will enjoy parallax
scrolling. For now Three playfields
are set up:
• The background is a 256 colors

320x400 BMP non compressed image
and it’s stored into VRAM . It uses
128Kb. And it’s rolling twice lower left
and right than the speed of the main
playfield. (The name of the file is
LEVEL__B.BMP).

• The main playfield: it’s the former we
used till now decor with transparency
enabled. It is still stored using slices and

is read on the fly directly from the CD-
ROM as we are scrolling. (The name of
the file is LEVEL___.DCR).

• The Foreground playfield: Just a small
image stored into the VRAM as an
uncompressed 256 320 x any height
BMP file. (The name of the file is
LEVEL__F.BMP).

For the moment, only Level.C and PSX.C
has been modified for doing parallax
scrolling. We expect to do it also in
SATURN.C

In order to do parallax scrolling not-by-hand
we have to integrate a new module in the
level editor of MMDEDIT.
Unfortunately, unlike the first level, next
levels are also doint vertical scrolling. This
means that we have to develop also a
vertical scrolling related routines. I will talk
with the game designer to fix that thing.

Real world

Actors now act as living people

eal world has to deal with actual
world behaviou. That is forces,
power, energy and all that stuff.
Unlike we did before, all actors

will be moved depending on their own
power and all external forces they are
subject to.
So new members have been added to
Tactor structure:

struct Tactor
{
... /* Old stuffs */

long _mass;
long _powerx,
 _powery,
 _powerz,
 _strengthx,
 _strengthy,
 _strengthz;

long _timeoutx,
 _timeouty,
 _timeoutz;
}

• Speeds:

 All speed was expressed as a pixel to
move per game rate basis. But the big
drawback is that we couldn’t move
any sprites with a very slow speed, say
1 pixel every second!

 Now all speed are expressed as the
number of pixels to move per second.
The guy taking care about that is, I
give it you, ACTDefBehaviour()
default function. The way
DefBehaviour() is doing this is:

 1) Just calculate the speed in
pixels/second.

 2) Calculate the pixel increment for
that frame taking care of frame
duration. (Frame duration is hold by
the FRAMETicks global variable).
This is done for each direction (x, y,
z).

 Two cases can happend:
 Either the pixel increment is null on

that direction, then it just add the
frameduration to the _timeout?
member and do not change the _?pos
member, or the pixel increment is not
nulll, then it changes the _?pos
member , doing an actual move on that

direction, eventually it resets the
_timeout? member.

 All necessary actor behaviour source
updates has been done in all actors.

• Mass:
 Every actor has now a mass. This is

calculate as the number of kilobyte the
bigest frame of an MMD’s got. The
mass must not be null, so if the size of
an MMD is below one kb, the mass is
set up to 1.

• Power:
 This is the force which enables an

actor to move by itself. If an actor is
self powered (_power? members not
all null), then this means that the actor
has an engine and can move by itself.

• Strenghts:
 These members hold any external

forces they are stressing the actor. It is
generally updated by other actors.

• Gravity:
The gravity is simulated using a gravity
constant named GEOM_GRAVITY?. The
force is computed using the formula:
Fx=0, Fy=_mass*GEOM_GRAVITYY,
Fz=0.

O

R

